Biometrics with Physical Exercise
Using Laser Doppler Vibrometry
Measurements of the Carotid Pulse

Mei Chen, Joseph A. O'Sullivan, Alan D. Kaplan,
Po-Hsiang Lai, Erik J. Sirevaag, and John W.
Rohrbaugh

Supported in part by TWSG project: Laser Doppler Vibrometry Measures of Physiological Function: Evaluation of Biometric Capabilities.
(Contract Number: W91CRB-04-C-0030)
Presented at BIdS Sept 23, 2009
Outline

• LDV Pulse Signal as A Biometric
• Issues with Physical Exercise
• Signal Acquisition Protocol
• Biometric Framework
 – Signal basics for different states
 – Approaches and performance
• Results
 – Log-normal model achieves EER < 2.8% inter-state test
 – 100% Recognition after resting for several minutes
• Conclusions
Laser Doppler Vibrometry Measurements at the Surface of the Skin
Advantages of LDV-Based Biometrics

• Remote: signal acquired at distances up to at least 15 meters
• Non-invasive: non-contact, with potential for invisible laser beam
• Hard to mimic: LDV cardiovascular signal is associated with intrinsic body activities
• Potential for broad assessment of health as well as biometric recognition
• Richly informative: LDV cardiovascular signal is complicated, encoding multiple incident and reflected waves in the individual’s arterial system
LDV Pulse Signal

- LDV Pulse Signal
 - Velocity signal
 - Sampling rate at 1000Hz
 - Aligned at the maximum velocity peak
 - 700 ms per pulse signal

- LDV Acceleration Signal
 - Derivative of the velocity signal
 - Left ventricular ejection time (LVET) is time between peaks
 - Time location of the second peak corresponds to the incisura
LDV Biometrics System

Comments:
• Separate training and testing data sets
• Performance for many different models
• Previous: different training/testing sessions
• This work: same session, different states
General Biometric Evaluation

- Waveform Decomposition with PCA
 - Intra-Session EER: 0.5%; Inter-Session EER: 22.5%
- Asymmetric Dynamic Time Warping
 - Intra-Session EER: 2.6%; Inter-Session EER: 19.3%
- Statistical Models with Informative Component Extraction
 - Exponential Distribution:
 Intra-Session EER: 3.5%; Inter-Session EER: 21.3%
 - Log-normal:
 Intra-Session EER: 1.0%; Inter-Session EER: 10.8% and 13.1%
- Biometric Fusion with Log-Normal Model of Spectrogram
 - Data Fusion with Inter-Session EER: 9.0%
 - Information Fusion with Inter-Session EER: 8.8% [SPIE, 09]
- Nonparametric Density Estimation with Informative and Stable Component Selection
 - Inter-Session EER: 8.2% [BSYM, 08]
- Two Aligned Segments with Spectrogram Based Log-Normal Model
 - Intra-Session EER: 0.5%; Inter-Session EER: 6.3% [IEEE Trans, 09]
Issues with Physical Exercise

• Physical Exercise with Changes
 – Heat rate
 – Blood pressure
 – LDV pulse signal

• Biometrics with Respect to
 – Biometric consistency during and after physical exercise
 – Recovery level and speed following exercise
 – Verification Performance
 – Recognition Performance
Signal Acquisition Protocol

• 21 Individuals
 – Age range: 19-31
 – Gender: 12 female and 9 male
 – Normal blood pressure and normal rest heart rate

• Sitting and Pedaling a Bicycle
 – Initial 3 min rest sitting
 – Pedaling to increase heart rate
 – Heart rate is raised to 55% of the age-adjusted theoretical maximum heart rate (220 – age)
 – 1 min rest to reduce heart rate
 – Repeat pedaling and resting cycle 8 times
 – Finally 5 min rest
Definition of States

- **Rest1**: initial 3 min of resting (150 LDV pulse signals)
- **Pedmax**: 8 distinct high heart rate periods (50 LDV pulse signals)
- **Pedmin**: 8 distinct 1 min resting periods following the *pedmax* (100 LDV pulse signals)
- **Rest2**: the ending rest period of 3 minutes (150 LDV pulse signals)
Signals in Different States

- Observed Changes
 - Heart rate changes during and after exercise
 - Amplitude of main peak changes, especially for state pedmax
 - Time location of the incisura changes: 30 ms early in state pedmax than other 3 states
Approaches for Biometric Evaluation

- Spectrogram based Log-normal Model with Informative Component Extraction
 - Large EER of inter-state test
 - Intra-individual variability associated with Informative components
- Resampling LDV Pulse Signal
 - Short-term variability due to heart rate change
 - Resampling with LVET
- Two Aligned Segments with Spectrogram based Log-normal Model
- Biometric Recognition
Spectrogram

• Time-Frequency Decomposition
 – Short time Fourier transform
 – Time shifts of 16ms with 80ms overlap
 – 96ms Hamming window applied

• Spectrogram
 – Matrix whose values are the magnitude square of the Fourier coefficients
 – Column vectors correspond to time frames
 – Row vectors correspond to frequency bins

Typical spectrogram with 32 time bins and 96 frequency bins
Comments:
- Normalization makes LDV pulse signals have constant energy.
- Multiple pulse signals can be used in testing.
- Match can be for recognition or authentication, or other.
- Matching is based on the computation of a score function.
Spectrogram Based Log-Normal Model

- Use Gaussian distribution to model the logarithm of the spectrogram
- Assume independent time-frequency bins
- Maximum likelihood (ML) estimates of the mean and variance for each bin
- Modified distance function
 \[S_i = \sum_{l=1}^{L} [(Y(l) - M_i(l))^2 - (Y(l) - M_0(l))^2] \]
- Performance is stable in state \(\text{rest2} \) (EER varies less than 1% for each minute data)

<table>
<thead>
<tr>
<th>Testing State</th>
<th>EER of Single Test Pulse</th>
<th>EER of Averaging 4 Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{rest1})</td>
<td>3.4%</td>
<td>1.1%</td>
</tr>
<tr>
<td>(\text{rest2})</td>
<td>14.8%</td>
<td>11.0%</td>
</tr>
<tr>
<td>(\text{pedmin})</td>
<td>17.3%</td>
<td>13.6%</td>
</tr>
<tr>
<td>(\text{pedmax})</td>
<td>29.8%</td>
<td>25.1%</td>
</tr>
</tbody>
</table>
Informative Components with Variability

- **Informative Components**
 - The nominal model is the average spectrogram
 - Select components whose distance to the nominal model larger than a set κ
 - Use relative entropy as the distance measure, calculated for each component
 - Applied in high dimension spectrogram matrix to select components
 - Mean relative entropy matrix shows discriminability on average
 - Lightness indicates the information rate

- **Variability Associated with Informative Components**
 - The informative components are around the incisura
 - Short-term variability also around the incisura
 - Need to align the incisura to the maximum velocity peak
Resampling Pulse Signal

• Heart Rate Changes with Short-term Variability
 – Changes occur in Inter-Beat-Interval (IBI) and left ventricular ejection time (LVET) in different states
 – Resampling to align the incisura relative to the maximum velocity peak

• Verification with Resampled Signal
 – Training on \textit{rest1}
 – EERs of intra-state and inter-state tests decrease

<table>
<thead>
<tr>
<th>Testing State</th>
<th>EER of Single Test Pulse</th>
<th>EER of Averaging 4 Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{rest1}</td>
<td>2.6%</td>
<td>0.9%</td>
</tr>
<tr>
<td>\textit{rest2}</td>
<td>8.4%</td>
<td>4.9%</td>
</tr>
<tr>
<td>\textit{pedmin}</td>
<td>16.7%</td>
<td>12.8%</td>
</tr>
<tr>
<td>\textit{pedmax}</td>
<td>25.8%</td>
<td>21.5%</td>
</tr>
</tbody>
</table>
Two Separate Aligned Segments Model

- Align two segment to the maximum velocity peak and the incisura separately
- 368 ms for each signal
- Spectrogram based log-normal model applied
- Averaging scores of two models
- Intra-state EER 0.3%
- Inter-state EER 2.8%
Recognition Performance

The M-ary hypothesis test is applied

\[C_i = \arg \max_m L(x_1, x_2, \ldots, x_N \mid \lambda_m) \]

- The test data \(x_1, \ldots, x_N \)
- \(C_i \) is the classification index for the data from subject \(i \)
- \(\lambda_m \) is the model for individual \(m \)
- A correct classification result in \(C_i = i \)
- Two separated segments model applied to calculate the score function

<table>
<thead>
<tr>
<th>Testing State</th>
<th>Number of correctly Recognized</th>
<th>performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>rest1</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>rest2</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>pedmin</td>
<td>19/21</td>
<td>90.5%</td>
</tr>
<tr>
<td>pedmax</td>
<td>13/21</td>
<td>61.9%</td>
</tr>
</tbody>
</table>
Conclusions

• A Strong Emerging Biometric Marker
 – High verification accuracy for intra-session/intra-state tests
 – Competitive performance for inter-session/inter-state tests
 – Variability during physical exercise
 – Biometric consistency after exercise
 – Signal recovers within minutes
Acknowledgments

- Sean Kristjansson
- Technical staff
- TSWG funding